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Alkynes are common, versatile reagents that are frequently Scheme 2

employed as building blocks in -©C bond-forming reactions R_[ir] H [ir]
mediated by transition metal compourédsO’Connor and co- TpYe2Ir(C,H,), % R{_} — g =
workers have reported recently in this joufthle facile generation e =

of iridacyclopentene and iridacyclopentadiene units upon reaction R R R R R

of TplIr(C,H4), with DMAD (Tp = hydrotris(pyrazolyl)borate; 2

DMAD = dimethyl acetylenedicarboxylate). Prompted by these ) o )

results, we report different results for the reactions of DMAD with 10 9ain further insight into these-&C bond-coupling processes,
related iridium complexes of the bulkier W§# ligand (Tpe2 = the reaction of THe2r(CgHs)2(N2)° and DMAD has been investi-

hydrotris(3,5-dimethylpyrazolyl)borate). Unusual iridacyclohep- gated. Using cyclohexane as the reaction solvent (Scheme 3) a 1:2
tatrienes, models for the proposed intermediates of the metal- scheme 3

catalyzed cyclotrimerization of alkynésre produced under mild /[Ir] R /[Ir] R R
conditions. Most remarkably, some of these unsaturated iridacycles 3 DMAD, H,O0 H20 H,0

. . . S L . TpMeAr(Ph),N, =" 722 +
undergo a mild, regioselective oxidation which involves a distant CeHyz, 60 °C R
C=C bond (that at the 34 position of the metallacyclic linkage) R
to yield unprecedented iridacyclohexadienes with a pendant, R
coordinated ketone functionality. 3 (1:2) 4

The Ir(l) butadiene derivative ™§2r(n*-CH,=C(Me)C(Me)=
CH,),5> when reacted with 3 equiv of DMAD at 6T (Scheme 1) mixture of complexes3 and 4,% readily separable by column
cromatography, is obtained.

Scheme 1 These isomeric compounds contain a benzannelated iridacyclo-
[ir] = TpMe2Ir = heptatriene linkage that formally results from the cycloaddition of
[ir] /[Ir] ! R H one benzyne and two DMAD unit8.0nce more, metal coordina-
\' 3DMAD,H,0  H,0 I , B/ tion is completed by a molecule of,B. Thus,3 and4 are closely
/éz CgHy2, 60 °C R @hll/ N&l}lé related tol. The water ligand ofl, 3, and4 is easily replaced by
R R R N NY,N other Lewis bases, resulting in the addutts, 3-L, and4-L (L =
R =CO,Me \ﬁK CO, PMg, and NCMe; GH1,, 25-60 °C, excess L).

As in the reaction leading tb, no intermediates can be detected
along the way ta3 and 4, even if a deficiency of the alkyne is
quantitatively generates complek® an iridacycloheptatriefe  used. It appears plausible that a benzoiridacyclopentadiene complex
resulting from the coupling of three molecules of the alkyne. A ([Ir]- 0-CsH,—C(R)=C(R)-) is generated, which finally yields the
molecule of adventitious water completes the metal coordination. two observed products, namedyand4, by the insertion of a second
NMR monitoring reveals that the diene is cleanly extruded, but no molecule of the alkyne into the Ir-alkenyl or the Ir-aryl bond,
intermediates can be detected even if only 1 equiv of the alkyne is respectively. It is worth mentioning that, when subjected to very
used. drastic oxidation conditions, the addu&#Me; and4-PMe; give

At variance with this result, the analogous reaction of'?{s- rise to 1,2,3,4-tetra(carboxymethyl)naphthal&hies., the product
(CzH4)-2 and DMAD affords compoun@.® As shown in Scheme  of reductive elimination of the hydrocarbyl ligand (Scheme 4).

2, the newly generated six-carbon organometallic ligand formally

results from the coupling of two molecules of DMAD and one of S¢eme 4 R

ethylene followed by the isomerization of the metallacyclic moiety 3PN . R

(stereospecific hydrogen shift) to give the observed hydrocarbyl s _H0,(30%) exe. OO

chain that consists of an alkyl and an allyl terminus. 4-PMe;  CgHyy, 150°C, 3d R
R
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As can be seen, one of the carbon atoms of the distant carbon
carbon double bond within the metallacycle (vide infra), namely
that at the 3,4-position, is regioselectively oxidized. Usingdtte-7

transformation as a model, the oxidation may occur as represented

in Scheme 5. A highly reactive Ir(Mjoxo derivative (see ref 12

Scheme 5
Il_ R M_ R
/[Ir] R 4[ ., p R

o)

H,0

for a unique Ir(V)}-oxo organometallic complex) could be respon-
sible for the oxidation of the carbon atom; the transfer of the O

atom to the double bond could produce an O-coordinated epoxide,

which would ultimately rearrange to the ketone-like prodddthis
and other mechanistic possibilities will be discussed in full in due
courset41s

Although this proposal is inevitably speculative, it finds support
in the following observations: (i) in accord with the inertness of
the PMg ligands toward substitution in T§r(l11) —PMe; com-
pounds, adduct3-PMe; and4-PMe; do not undergo this oxidation.
(i) Complexes6 and7 may be alternatively generated directly if
the reaction of Scheme 3 (i.e. that leading3tand 4) is effected
in the presence of oxygen. This route utilizes milder conditions
than those required for the dioxygen-induced oxidation8 ahd

4 (vide supra) due to preferred coordination of the oxygen relative

to water. (iii) As already noted, the seemingly distart@© bond

of the iridacycle is selectively oxidized; note however that the boat

conformation adopted by these ring systems places thi€ Gond
close to the vacant coordination site at iridium (followingQH

dissociation) and thus close to the oxo ligand of the purported

Ir(V) —oxo intermediaté®

In summary, the chemistry reported here provides new entries

into metallacycles resulting from metal-induced coupling of alkynes.

We have succeeded in isolating novel iridacycloheptatriene struc-

tures which are useful models for the metal-catalyzed cyclo-

trimerization of alkynes. Moreover we have demonstrated that C

atoms of distant &C bonds, including aromatic ones, can

selectively be converted to the corresponding keto functionality

under mild conditions.
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